If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+18n+73=0
a = 1; b = 18; c = +73;
Δ = b2-4ac
Δ = 182-4·1·73
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{2}}{2*1}=\frac{-18-4\sqrt{2}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{2}}{2*1}=\frac{-18+4\sqrt{2}}{2} $
| 2=10/b | | 6.5x=78-x | | 1=3^-3x-6 | | 3x+1/4=x/8+1/6 | | 4x-6(-7x+23)=0 | | X2+5y-4=0 | | 80/3x=5 | | 7-3x=2x+14 | | 15=w-9 | | 3x=3x(1/12)-5 | | 2x+12=5x+25 | | 0.4n-1.2=0.4 | | 54+x=20 | | 1.26d=5.04 | | 9=9(w-3) | | 100000+500x=105000+250x | | .4r-15=r-10.8 | | 8x-5=8x+16 | | 0.40x0.35=0.14 | | 250x=900 | | 4/5x-1/2x=1 | | X^5-x-0.125=0 | | 5-4a=10 | | 5(w-3)=3w+1 | | 4(x+5)=7(x+2) | | 4(x+5)=7(x+2 | | 15(x-2)=x+6 | | 3/5k+2=11 | | 2(3y-9)=18 | | 12+7p=8+-10p | | 28f=720 | | n+1=4(n-7) |